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Image representation

 Images are represented as multi-dimensional arrays

 The origin is located in top-left corner

 0 is for black value and 255 (or 1.0) is for white value

2

Image: np.ndarray

pixels: array values: a[2, 3]

channels: array dimensions

image encoding: dtype (np.uint8, np.float)

filters: functions (scipy, skimage, opencv)

Image type Coordinates

2D grayscale images (row, column)

2D multichannel images (row, column, channel)

batch of 2D grayscale images (batch, row, column)

2D multichannel images (batch, row, column, channel)

https://pixspy.com/


Three essential computer vision tasks

 Image classification - Where the goal is to assign one or more labels to an image. It may be 

either single-label classification (an image can only be in one category, excluding the others), 

or multi-label classification (tagging all categories that an image belongs to)

 For example, when you search for a keyword on the Google Photos app, behind the scenes, you’re 

querying a very large multilabel classification

 Object  detection - Where  the  goal  is  to  draw  rectangles  (called  bounding  boxes) 

around objects of interest in an image and associate each rectangle with a class

 A self-driving car could use an object-detection model to monitor cars, pedestrians, and signs in 

view of its cameras, for instance

 Image segmentation - Where the goal is to “segment” or “partition” an image into different 

areas, with each area usually representing a category

 For  instance,  when  Zoom  or  Google  Meet  displays  a  custom  background behind you in a 

video call, it’s using an image segmentation model to tell your face apart from what’s behind it, at 

pixel precision
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Three essential computer vision tasks
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Three essential computer vision tasks - Image Segmentation

 Semantic segmentation, where each pixel is independently classified into a semantic category, 

like “cat.” If there are two cats in the image, the corresponding pixels are all mapped to the 

same generic “cat” 

 Instance segmentation, which seeks not only to classify image pixels by category, but also to 

parse out individual object instances. In an image with two cats in it, instance segmentation 

would treat “cat 1” and “cat 2” as two separate classes of pixels
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The beginning of the story

 Visual perception takes place outside consciousness and gives us high-level 

features

 Visual perception is not trivial at all, and to understand it, we must look at how the sensory 

modules work

 Recently computers were also able to reliably perform seemingly trivial tasks for humans 

such as detecting a puppy in a picture

 Convolutional Neural Networks (CNNs) or covnets emerged from the study of 

the brain’s visual cortex, and they have been used in image recognition since 

the 1980s

6



The Study of the Visual Cortex

 Studies in the 1950s show that neurons in the visual cortex have a small local 

receptive field

 Some neurons have larger receptive fields, and they react to more complex patterns that are 

combinations of the lower-level patterns (notice that each neuron is connected only to a 

few neurons from the previous layer, which is called partially connected)

 Some neurons react only to images of horizontal lines, while others react only to lines with 

different orientations (the strength may be the same, which is called weight sharing)
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Example of a single filter



Convolutional Neural Networks in image classification

 Neural networks rebounded around 2010 with big successes in image 

classification

 Shown are samples from CIFAR100 database. 32 × 32 color natural images, with 100 

classes. 50K training images, 10K test images

 Each image is a three-dimensional array or feature map: 32 × 32 × 3 array of 8-bit 

numbers. The last dimension represents the three color channels for red, green and blue
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How CNNs Work

 The CNN builds up an image in a hierarchical fashion

 Edges and shapes are recognized and pieced together to form more complex 

shapes, eventually assembling the target image

 This hierarchical construction is achieved using convolution and pooling layers
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1. Convolution operations

 Input image =

𝑎 𝑏 𝑐
𝑑 𝑒 𝑓
𝑔
𝑗

ℎ
𝑘

𝑖
𝑙

Convolution filter (kernel) =
𝛼 𝛽
𝛾 𝛿

Convoluted image =

𝑎𝛼 + 𝑏𝛽 + 𝑑𝛾 + 𝑒𝛿 𝑏𝛼 + 𝑐𝛽 + 𝑒𝛾 + 𝑓𝛿
𝑑𝛼 + 𝑒𝛽 + 𝑔𝛾 + ℎ𝛿 𝑒𝛼 + 𝑓𝛽 + ℎ𝛾 + 𝑖𝛿
𝑔𝛼 + ℎ𝛽 + 𝑗𝛾 + 𝑘𝛿 ℎ𝛼 + 𝑖𝛽 + 𝑘𝛾 + 𝑙𝛿

1. The filter itself can be represented as an image that represents a small shape, 

edge etc. We slide it around the input image, scoring for matches

2. The scoring is done via dot-products, illustrated above. If the subimage of the 

input image is similar to the filter, the score is high, otherwise low

3. The filters are learned during training
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Convolution Layer

 To have the same height and width as the input image, it is common to add 

zeros around the inputs, which is called zero padding (Same padding)

 If there is no padding applied to the input it is called valid padding

 It is also possible to space out the receptive fields. The shift from one receptive 

field to the next is called the stride

 Transposed convolutions (deconvolution) work by swapping the forward and 

backward passes of a convolution
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https://github.com/vdumoulin/conv_arithmetic


Convolution Example – locally connected

 The idea of convolution with a filter is to find common patterns that occur in 

different parts of the image

 The two filters shown here highlight vertical and horizontal stripes (Note that the neuron’s 

weights can be represented as a small image that has the size of the receptive field)

 The result of the convolution is a new feature map (units in the hidden layer)

 Notice the neurons are now locally connected and share the same weight for each feature map
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Convolution Example – weight sharing

 In a convolution layer, we use a whole bank of filters to pick out a variety of 

differently-oriented edges and shapes in the image

 Using predefined filters is standard practice in image processing. By contrast, 

with CNNs the filters are learned for the specific classification task

 You must defined the size, stride and padding for a given layer

 Filter weights are the parameters going from an input layer to a hidden layer, 

with one hidden unit for each pixel in the convolved image. The same weights 

in a given filter are reused for all possible patches in the image 

 All neurons within a given feature map share the same parameters and neurons in different 

feature maps use different parameters
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https://setosa.io/ev/image-kernels/


Stacking Multiple Feature Maps

 If we use 𝐾 different convolution, we get 𝐾
two-dimensional output feature maps, which 

together are treated as a single three-

dimensional feature map

 The third dimension is called the depth (or 

channel)

 Input images has three channels represented by 

a three-dimensional feature map. A single 

convolution filter will also have three channels, 

one per color, with potentially different filter 

weights, and dot-products are summed (integral)

 We typically apply the ReLU activation 

function to the convolved image and higher 

layers will have larger receptive fields
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https://cs231n.github.io/convolutional-networks/#conv
https://distill.pub/2019/computing-receptive-fields/


Memory Requirements

 CNNs convolutional layers require a huge amount of RAM. This is especially 

true during training

 During inference the RAM occupied by one layer can be released as soon as the next layer 

has been computed, so you only need as much RAM as required by two consecutive layers 

But during training everything computed during the forward pass needs to be preserved for 

the reverse pass, so the amount of RAM needed is (at least) the total amount of RAM 

required by all layers

 Check appendix for the details about backpropagation 

 If training crashes because of an out-of-memory error

1. Try reducing the mini-batch size

2. Try reducing dimensionality using a stride, or removing a few layers 

3. Try using 16-bit floats instead of 32-bit floats
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2. Pooling Layer

 The goal is to subsample the input image in order to reduce the computational 

load, the memory usage, and the number of parameters 

1. Like in convolutional layers, each neuron in a pooling layer is connected to the outputs of 

a limited number of neurons in the previous layer, located within a small rectangular 

receptive field. You must define its size, stride, and the padding type

2. A pooling neuron has no weights

3. A pooling layer typically works on every input channel independently, so the output 

depth is the same as the input depth
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Pooling

 Max pool 

1 2 5 3
3 0 1 2
2
1

1
1

3
2

4
0

→
3 5
2 4

 Each non-overlapping 2 × 2 block is 

replaced by its maximum

 This sharpens the feature identification

 Reduces the dimension by a factor of 4 - i.e. 

factor of 2 in each dimension

 Allows for locational invariance

 Such invariance can be useful in cases where 

the prediction should not depend on these 

details, such as in classification tasks
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Pooling

 Average pooling is less popular now due to its performance

 Max pooling preserves only the strongest features, getting rid of all the meaningless ones, 

so the next layers get a cleaner signal to work with. Moreover, max pooling offers stronger 

translation invariance than average pooling, and it requires slightly less compute 

 Just like dimension reduction, you can also perform it on the depth dimension

 Allow CNN to learn to be invariant to various features rather than the spatial dimensions

 Try, for example, tensor projection layer instead

 Pooling is very destructive

 In some applications, invariance is not desirable

 Take semantic segmentation (the task of classifying each pixel in an image according to the 

object that pixel belongs to): obviously, if the input image is translated by one pixel to the 

right, the output should also be translated by one pixel to the right
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https://github.com/senyuan-juncheng/TensorProjectionLayer


3. Architecture of a CNN

 Many convolve + pool layers

 Filters are typically small, e.g. each channel 3 × 3

 Each filter creates a new channel in the convolution layer

 As pooling reduces size, the number of filters/channels is typically increased

 In the end, three-dimensional feature maps are flattened - the pixels are treated as separate 

units - and fed into one or more fully-connected layers before reaching the output layer
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Architecture of a CNN

 Over the years, variants of this fundamental architecture have been developed, 

leading to amazing advances in the field

 The images in ImageNet are large (256 pixels) and there are 1,000 classes, some of which 

are really subtle (try distinguishing 120 dog breeds). Looking at the evolution of the 

winning entries is a good way to understand how CNNs work

 We can inspect the covnets like LeNet-5 architecture (1998), then winners of the ILSVRC 

challenge: AlexNet (2012), GoogLeNet (2014), ResNet (2015) and SENet (2017)
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https://chtseng.wordpress.com/2017/11/20/ilsvrc-

%E6%AD%B7%E5%B1%86%E7%9A%84%E6%B7%B1%E5%BA%A6%E5%AD%B8%E7

%BF%92%E6%A8%A1%E5%9E%8B/

https://poloclub.github.io/cnn-explainer/
https://www.tensorflow.org/datasets/catalog/imagenet2012
https://chtseng.wordpress.com/2017/11/20/ilsvrc-%E6%AD%B7%E5%B1%86%E7%9A%84%E6%B7%B1%E5%BA%A6%E5%AD%B8%E7%BF%92%E6%A8%A1%E5%9E%8B/


4. Regularization method - Data augmentation (Rule-based)

 Natural transformations are made of each training image when it is sampled by 

SGD on the fly, thus ultimately making a cloud of images around each original 

training image

 The label is left unchanged - in each case still a tiger

 Typical distortions are zoom, horizontal and vertical shift, shear, small rotations, and in this 

case, horizontal flips
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Regularization method - Mixup

 Mixup is a powerful data augmentation technique 

 It’s helpful to have techniques that “dial-up/down” the amount of change, to see what 

works best for you

1. Select another image from your dataset at random

2. Pick a weight at random

3. Take a weighted average (using the weight from step 2) of the selected image with your 

image; this will be your independent variable

4. Take a weighted average (with the same weight) of this image’s labels (one-hot encoded) 

with your image’s labels; this will be your dependent variable
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Another regularization method – Label smoothing

 In the theoretical expression of loss, in classification problems, our targets are 

one-hot encoded

 This can become very harmful if your data is not perfectly labeled

 Instead, we could replace all our 1s with a number a bit less than 1, and our 0s with a 

number a bit more than 0, and then train. This is called label smoothing

 By encouraging your model to be less confident, label smoothing will make your training 

more robust, even if there is mislabeled data!

 For example that has 10 classes, the targets become something like this (1 −
𝜖

𝑁
and 

𝜖

𝑁
):

[0.01, 0.01, 0.01, 0.91, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01]
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Example

 Here we use the 50-layer 

resnet50 network trained on 

the 1000-class imagenet corpus 

to classify some photographs

 The table below the images 

displays the true label at the 

top of each panel, and the top 

three choices of the classifier. 

The numbers are the estimated 

probabilities for each choice. 

(A kite is a raptor, but not a 

hawk.)
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5. Low quality 𝑋 (image)

 The quality of machine learning models hinges on the quality of the data used 

to train them, but it is hard to manually identify all of the low-quality data in a 

big dataset
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 CleanVision helps you 

automatically identify common 

types of data issues lurking in 

image datasets

 Remember that you can use 

cleanlab to find label issues (𝑦) for 

images

https://github.com/cleanlab/cleanvision
https://github.com/cleanlab/examples


Which type of problems can be solved using CNN?

 Image recognizer can learn to complete many tasks

 For instance, a sound can be converted to a spectrogram, which is a chart that shows the a

mount of each frequency at each time in an audio file and can be tackled using CNN

 There are various transformations available for time series data. For instance, using a 

technique called Gramian Angular Difference Field (GADF) and feed into CNN
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Similar approach can be found in:

https://ndltd.ncl.edu.tw/cgi-

bin/gs32/gsweb.cgi/login?o=dnclcdr&s=id=%22110NSYS5507009%22.&searchmode=basic

https://etown.medium.com/great-results-on-audio-classification-with-fastai-library-ccaf906c5f52
https://forums.fast.ai/t/share-your-work-here/27676/531?page=18
https://ndltd.ncl.edu.tw/cgi-bin/gs32/gsweb.cgi/login?o=dnclcdr&s=id="110NSYS5507009".&searchmode=basic


Which type of problems can be solved using CNN?

 If the human eye can recognize categories from the images, then a deep 

learning model should be able to do so too

 Fraud detection by drawing and image where the position, speed, and acceleration of the 

mouse pointer by using colored lines and the clicks were displayed using small colored 

circles. The results are fed into CNN for classification 

 Malware binary file is divided into 8-bit sequences which are then converted to equivalent 

decimal values. This decimal vector is reshaped and a gray-scale image is generated that 

represents the malware sample
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https://www.splunk.com/en_us/blog/security/deep-learning-with-splunk-and-tensorflow-for-security-catching-the-fraudster-in-neural-networks-with-behavioral-biometrics.html
https://ieeexplore.ieee.org/abstract/document/8328749


Conclusion

 The model should be organized into repeated blocks of layers, usually made of

multiple convolution layers and a max pooling layer

 The number of filters in your layers should increase as the size of the spatial feature maps 

decreases

 Deep and narrow is better than broad and shallow

 Deep learning for computer vision also encompasses a number of somewhat 

more niche tasks besides these three, such as image similarity scoring 

(estimating how visually similar two images are), keypoint detection 

(pinpointing attributes of interest in an image, such as facial features), pose 

estimation, 3D mesh estimation, and so on

28



References

[1] Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow, 3rd 

Edition Chapter 14

[2] An Introduction to Statistical Learning with Applications in R. Second 

Edition Chapter 10

[3] Deep learning with Python, 2nd Edition Chapter 8~9

[4] Deep Learning for Coders with Fastai and Pytorch: AI Applications Without a 

PhD Chapter 1 and 7

29

https://www.oreilly.com/library/view/hands-on-machine-learning/9781098125967/
https://www.statlearning.com/
https://www.manning.com/books/deep-learning-with-python-second-edition
https://github.com/fastai/fastbook2e


Appendix
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Resources

 Understand CNN

 https://d2l.ai/chapter_convolutional-neural-networks/conv-layer.html

 https://setosa.io/ev/image-kernels/

 https://poloclub.github.io/cnn-explainer/

 https://cs231n.github.io/convolutional-networks/#conv

 https://distill.pub/2019/computing-receptive-fields/

 https://distill.pub/2018/building-blocks/

 https://distill.pub/2017/feature-visualization/

 Backpropagation for convolution and pooling layers

 Convolution layer

 Max pooling
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https://d2l.ai/chapter_convolutional-neural-networks/conv-layer.html
https://poloclub.github.io/cnn-explainer/
https://poloclub.github.io/cnn-explainer/
https://cs231n.github.io/convolutional-networks/#conv
https://distill.pub/2019/computing-receptive-fields/
https://distill.pub/2018/building-blocks/
https://distill.pub/2017/feature-visualization/
https://pavisj.medium.com/convolutions-and-backpropagations-46026a8f5d2c
https://datascience.stackexchange.com/questions/11699/backprop-through-max-pooling-layers


Resources

 Data augmentation

 https://seunghan96.github.io/cv/vision_15_Data_Augmentation(1)/

 https://coggle.it/diagram/XttJu5nHqhqCptXn/t/data-augmentation

 Integration to sklearn

 https://github.com/adriangb/scikeras

 https://github.com/skorch-dev/skorch

 Data cleaning

 https://github.com/idealo/imagededup

 https://github.com/cleanlab/cleanlab

 https://github.com/cleanlab/cleanvision
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https://seunghan96.github.io/cv/vision_15_Data_Augmentation(1)/
https://coggle.it/diagram/XttJu5nHqhqCptXn/t/data-augmentation
https://github.com/skorch-dev/skorch
https://github.com/skorch-dev/skorch
https://github.com/idealo/imagededup
https://github.com/cleanlab/cleanlab
https://github.com/cleanlab/cleanvision


Resources

 Image processing library

 https://github.com/ml-tooling/best-of-ml-python#image-data

 https://scikit-image.org

 https://docs.opencv.org/4.x/d6/d00/tutorial_py_root.html

 https://github.com/kornia/kornia

 Dataset

 https://paperswithcode.com/datasets?mod=images&task=image-classification

 ImageNet, Imagenette - https://github.com/fastai/imagenette

 Cifar10, Cifar100 - https://www.cs.toronto.edu/~kriz/cifar.html

 MNIST, FashionMNIST - https://github.com/zalandoresearch/fashion-mnist

 https://paperswithcode.com/datasets?mod=images&task=object-detection

 https://paperswithcode.com/datasets?mod=images&task=semantic-segmentation
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https://github.com/ml-tooling/best-of-ml-python#image-data
https://scikit-image.org/
https://docs.opencv.org/4.x/d6/d00/tutorial_py_root.html
https://github.com/kornia/kornia
https://paperswithcode.com/datasets?mod=images&task=image-classification
https://github.com/fastai/imagenette
https://www.cs.toronto.edu/~kriz/cifar.html
https://github.com/zalandoresearch/fashion-mnist
https://paperswithcode.com/datasets?mod=images&task=object-detection
https://paperswithcode.com/datasets?mod=images&task=semantic-segmentation&page=1


Other popular architectures for image classifications

 Tensorflow

 Keras

 VGG

 DenseNet

 SENet

 EfficientNet

 MobileNet

 Pytorch
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https://keras.io/api/applications/
https://keras.io/api/applications/vgg/
https://keras.io/api/applications/densenet/
https://arxiv.org/abs/1709.01507
https://keras.io/api/applications/efficientnet/
https://keras.io/api/applications/mobilenet/
https://github.com/huggingface/pytorch-image-models


Popular architectures for object detection

 Tensorflow

 https://keras.io/guides/keras_cv/object_detection_keras_cv/

 SSD

 Faster-RCNN

 RetinaNet

 Pytorch

 https://github.com/microsoft/computervision-recipes/tree/staging

 https://github.com/huggingface/pytorch-image-models

 https://github.com/facebookresearch/detectron2

 YOLO

 YOLOX
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https://keras.io/guides/keras_cv/object_detection_keras_cv/
https://github.com/tensorflow/models/tree/master/research/object_detection
https://github.com/tensorflow/models/tree/master/research/object_detection
https://keras.io/examples/vision/retinanet/
https://github.com/microsoft/computervision-recipes/tree/staging
https://github.com/huggingface/pytorch-image-models
https://github.com/facebookresearch/detectron2
https://github.com/Megvii-BaseDetection/YOLOX


Popular architectures for image segmentation

 Tensorflow

 https://github.com/divamgupta/image-segmentation-keras

 https://github.com/google-research/deeplab2

 Pytorch

 https://github.com/qubvel/segmentation_models.pytorch

 https://github.com/facebookresearch/segment-anything

36

https://github.com/divamgupta/image-segmentation-keras
https://github.com/google-research/deeplab2
https://github.com/qubvel/segmentation_models.pytorch
https://github.com/facebookresearch/segment-anything


 Convolution: 

 The size of kernel matrix is 3 × 3, stride is 1, no zero padding

 𝐶: 𝑅16 → 𝑅4

 Transposed convolution:

 𝐶𝑇: 𝑅4 → 𝑅16

Convolution and transposed convolution
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https://github.com/vdumoulin/conv_arithmetic


Architecture of a CNN

 The size of the convolution filter

1. A common mistake is to use convolution kernels that are too large

2. For example, instead of using a convolutional layer with a 5 × 5 kernel, stack two layers 

with 3 × 3 kernels: it will use fewer parameters and require fewer computations, and it 

will usually perform better

3. One exception is for the first convolutional layer: it can typically have a large kernel, 

usually with a stride of 2 or more: this will reduce the spatial dimension of the image 

without losing too much information, and since the input image only has three channels 

in general, it will not be too costly
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AlexNet - Fully convolution neural network

 AlexNet is the first to stack convolutional layers directly on top of one another, 

instead of stacking a pooling layer on top of each convolutional layer

 The idea of Fully Convolutional Networks (FCNs) was then introduced in a 2015 paper by 

Jonathan Long et al., for semantic segmentation. The authors pointed out that you could 

replace the dense layers at the top of a CNN by convolutional layers

39

 The ideas to replace pooling with convolution also appears: 

 When you do 2 × 2 max pooling, we are completely destroying location 

information within each pooling window: we return one scalar value per 

window, with zero knowledge of which of the four locations in the 

windows the value came from

 So while max pooling layers perform well for classification tasks, they 

would hurt us quite a bit for a segmentation task. Meanwhile, strided

convolutions do a better job at downsampling feature maps while retaining 

location information

https://cs231n.github.io/convolutional-networks/#convert


GoogleLeNet - Inception module

 “3 × 3 + 1(S)” means it uses a 3 × 3 kernel, stride 1, and "same" padding

 The input signal is first copied and fed to four different layers. The second set of 

convolutional layers uses different kernel sizes (1 × 1, 3 × 3, and 5 × 5), allowing them to 

capture patterns at different scales. Although 1 × 1 kernel cannot capture spatial patterns, 

they can capture patterns along the depth dimension

 Concatenate all the outputs along the depth dimension in the depth concatenation layer

 The number of convolutional kernels for each convolutional layer is a hyperparameter
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Xception - Depthwise separable convolutions

 Replaces the inception modules with a special type of layer called a depthwise

separable convolution layer (or separable convolution layer for short )

 While a regular convolutional layer uses filters that try to simultaneously capture spatial 

patterns (e.g., an oval) and crosschannel patterns (e.g., mouth + nose + eyes = face), a 

separable convolutional layer makes the strong assumption that spatial patterns and cross-

channel patterns can be modeled separately
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 Thus, it is composed of two parts: the first 

part applies a single spatial filter for each 

input feature map, then the second part 

looks exclusively for cross-channel 

patterns—it is just a regular convolutional 

layer with 1 × 1 filters



Xception - Depthwise separable convolutions

 SeparableConv2D in Keras that can be a drop-in replacement for Conv2D

 It relies on the assumption that spatial locations in intermediate activations are highly 

correlated, but different channels are highly independent. Because this assumption is 

generally true for the image representations learned by deep neural networks, it serves as a 

useful prior that helps the model make more efficient use of its training data
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ResNet - Residual learning 

 Solve the vanishing gradient problem using skip (residual) connection

 The connection acts as an information shortcut around destructive or noisy blocks (such as 

blocks that contain relu activations or dropout layers), enabling error gradient information 

from higher layers to propagate noiselessly through a deep network

 Forward (𝑙 to 𝑙 + 1 layer) (In contrast to 𝑥𝐿 = ς𝑖=𝑙
𝐿−1𝑊𝑖 𝑥𝑙)

 𝑥𝑙+1 = 𝑥𝑙 + 𝐹 𝑥𝑙 ,𝑊𝑙 , 𝑥𝐿 = 𝑥𝑙 + σ𝑖=1
𝐿−1𝐹 𝑥𝑖 ,𝑊𝑖

 Backward (In contrast to 
𝜕𝐸

𝜕𝑥𝑙
= ς𝑖=𝑙

𝐿−1𝑊𝑖
𝜕𝐸

𝜕𝑥𝐿
)



43

https://arxiv.org/abs/1603.05027


 Residual 𝑓(𝑥) is easier to learn using skip connection

 If the target function is fairly close to the identity function (which is often the case), this 

will speed up training considerably

 The network can start making progress even if several layers have not started learning yet

ResNet - Residual learning 
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ResNet - Residual learning 

 When the size is different and can not be added just use 1 × 1 convolution with 

strides 

 It is noted that some networks use concatenation instead of summation like DenseNet

 Behaves like ensemble
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https://stackoverflow.com/questions/49164230/deep-neural-network-skip-connection-implemented-as-summation-vs-concatenation
https://openaccess.thecvf.com/content_cvpr_2017/papers/Huang_Densely_Connected_Convolutional_CVPR_2017_paper.pdf
https://arxiv.org/abs/1605.06431


AlexNet
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GoogLeNet and ResNet
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