
Image processing with Convolutional

Neural Networks

Szu-Chi Chung

Department of Applied Mathematics, National Sun Yat-sen University

Image representation

 Images are represented as multi-dimensional arrays

 The origin is located in top-left corner

 0 is for black value and 255 (or 1.0) is for white value

2

Image: np.ndarray

pixels: array values: a[2, 3]

channels: array dimensions

image encoding: dtype (np.uint8, np.float)

filters: functions (scipy, skimage, opencv)

Image type Coordinates

2D grayscale images (row, column)

2D multichannel images (row, column, channel)

batch of 2D grayscale images (batch, row, column)

2D multichannel images (batch, row, column, channel)

https://pixspy.com/

Three essential computer vision tasks

 Image classification - Where the goal is to assign one or more labels to an image. It may be

either single-label classification (an image can only be in one category, excluding the others),

or multi-label classification (tagging all categories that an image belongs to)

 For example, when you search for a keyword on the Google Photos app, behind the scenes, you’re

querying a very large multilabel classification

 Object detection - Where the goal is to draw rectangles (called bounding boxes)

around objects of interest in an image and associate each rectangle with a class

 A self-driving car could use an object-detection model to monitor cars, pedestrians, and signs in

view of its cameras, for instance

 Image segmentation - Where the goal is to “segment” or “partition” an image into different

areas, with each area usually representing a category

 For instance, when Zoom or Google Meet displays a custom background behind you in a

video call, it’s using an image segmentation model to tell your face apart from what’s behind it, at

pixel precision

3

Three essential computer vision tasks

4

Three essential computer vision tasks - Image Segmentation

 Semantic segmentation, where each pixel is independently classified into a semantic category,

like “cat.” If there are two cats in the image, the corresponding pixels are all mapped to the

same generic “cat”

 Instance segmentation, which seeks not only to classify image pixels by category, but also to

parse out individual object instances. In an image with two cats in it, instance segmentation

would treat “cat 1” and “cat 2” as two separate classes of pixels

5

The beginning of the story

 Visual perception takes place outside consciousness and gives us high-level

features

 Visual perception is not trivial at all, and to understand it, we must look at how the sensory

modules work

 Recently computers were also able to reliably perform seemingly trivial tasks for humans

such as detecting a puppy in a picture

 Convolutional Neural Networks (CNNs) or covnets emerged from the study of

the brain’s visual cortex, and they have been used in image recognition since

the 1980s

6

The Study of the Visual Cortex

 Studies in the 1950s show that neurons in the visual cortex have a small local

receptive field

 Some neurons have larger receptive fields, and they react to more complex patterns that are

combinations of the lower-level patterns (notice that each neuron is connected only to a

few neurons from the previous layer, which is called partially connected)

 Some neurons react only to images of horizontal lines, while others react only to lines with

different orientations (the strength may be the same, which is called weight sharing)

7

Example of a single filter

Convolutional Neural Networks in image classification

 Neural networks rebounded around 2010 with big successes in image

classification

 Shown are samples from CIFAR100 database. 32 × 32 color natural images, with 100

classes. 50K training images, 10K test images

 Each image is a three-dimensional array or feature map: 32 × 32 × 3 array of 8-bit

numbers. The last dimension represents the three color channels for red, green and blue

8

How CNNs Work

 The CNN builds up an image in a hierarchical fashion

 Edges and shapes are recognized and pieced together to form more complex

shapes, eventually assembling the target image

 This hierarchical construction is achieved using convolution and pooling layers

9

1. Convolution operations

 Input image =

𝑎 𝑏 𝑐
𝑑 𝑒 𝑓
𝑔
𝑗

ℎ
𝑘

𝑖
𝑙

Convolution filter (kernel) =
𝛼 𝛽
𝛾 𝛿

Convoluted image =

𝑎𝛼 + 𝑏𝛽 + 𝑑𝛾 + 𝑒𝛿 𝑏𝛼 + 𝑐𝛽 + 𝑒𝛾 + 𝑓𝛿
𝑑𝛼 + 𝑒𝛽 + 𝑔𝛾 + ℎ𝛿 𝑒𝛼 + 𝑓𝛽 + ℎ𝛾 + 𝑖𝛿
𝑔𝛼 + ℎ𝛽 + 𝑗𝛾 + 𝑘𝛿 ℎ𝛼 + 𝑖𝛽 + 𝑘𝛾 + 𝑙𝛿

1. The filter itself can be represented as an image that represents a small shape,

edge etc. We slide it around the input image, scoring for matches

2. The scoring is done via dot-products, illustrated above. If the subimage of the

input image is similar to the filter, the score is high, otherwise low

3. The filters are learned during training
10

Convolution Layer

 To have the same height and width as the input image, it is common to add

zeros around the inputs, which is called zero padding (Same padding)

 If there is no padding applied to the input it is called valid padding

 It is also possible to space out the receptive fields. The shift from one receptive

field to the next is called the stride

 Transposed convolutions (deconvolution) work by swapping the forward and

backward passes of a convolution

11

https://github.com/vdumoulin/conv_arithmetic

Convolution Example – locally connected

 The idea of convolution with a filter is to find common patterns that occur in

different parts of the image

 The two filters shown here highlight vertical and horizontal stripes (Note that the neuron’s

weights can be represented as a small image that has the size of the receptive field)

 The result of the convolution is a new feature map (units in the hidden layer)

 Notice the neurons are now locally connected and share the same weight for each feature map

12

Convolution Example – weight sharing

 In a convolution layer, we use a whole bank of filters to pick out a variety of

differently-oriented edges and shapes in the image

 Using predefined filters is standard practice in image processing. By contrast,

with CNNs the filters are learned for the specific classification task

 You must defined the size, stride and padding for a given layer

 Filter weights are the parameters going from an input layer to a hidden layer,

with one hidden unit for each pixel in the convolved image. The same weights

in a given filter are reused for all possible patches in the image

 All neurons within a given feature map share the same parameters and neurons in different

feature maps use different parameters

13

https://setosa.io/ev/image-kernels/

Stacking Multiple Feature Maps

 If we use 𝐾 different convolution, we get 𝐾
two-dimensional output feature maps, which

together are treated as a single three-

dimensional feature map

 The third dimension is called the depth (or

channel)

 Input images has three channels represented by

a three-dimensional feature map. A single

convolution filter will also have three channels,

one per color, with potentially different filter

weights, and dot-products are summed (integral)

 We typically apply the ReLU activation

function to the convolved image and higher

layers will have larger receptive fields

14

https://cs231n.github.io/convolutional-networks/#conv
https://distill.pub/2019/computing-receptive-fields/

Memory Requirements

 CNNs convolutional layers require a huge amount of RAM. This is especially

true during training

 During inference the RAM occupied by one layer can be released as soon as the next layer

has been computed, so you only need as much RAM as required by two consecutive layers

But during training everything computed during the forward pass needs to be preserved for

the reverse pass, so the amount of RAM needed is (at least) the total amount of RAM

required by all layers

 Check appendix for the details about backpropagation

 If training crashes because of an out-of-memory error

1. Try reducing the mini-batch size

2. Try reducing dimensionality using a stride, or removing a few layers

3. Try using 16-bit floats instead of 32-bit floats

15

2. Pooling Layer

 The goal is to subsample the input image in order to reduce the computational

load, the memory usage, and the number of parameters

1. Like in convolutional layers, each neuron in a pooling layer is connected to the outputs of

a limited number of neurons in the previous layer, located within a small rectangular

receptive field. You must define its size, stride, and the padding type

2. A pooling neuron has no weights

3. A pooling layer typically works on every input channel independently, so the output

depth is the same as the input depth

16

Pooling

 Max pool

1 2 5 3
3 0 1 2
2
1

1
1

3
2

4
0

→
3 5
2 4

 Each non-overlapping 2 × 2 block is

replaced by its maximum

 This sharpens the feature identification

 Reduces the dimension by a factor of 4 - i.e.

factor of 2 in each dimension

 Allows for locational invariance

 Such invariance can be useful in cases where

the prediction should not depend on these

details, such as in classification tasks

17

Pooling

 Average pooling is less popular now due to its performance

 Max pooling preserves only the strongest features, getting rid of all the meaningless ones,

so the next layers get a cleaner signal to work with. Moreover, max pooling offers stronger

translation invariance than average pooling, and it requires slightly less compute

 Just like dimension reduction, you can also perform it on the depth dimension

 Allow CNN to learn to be invariant to various features rather than the spatial dimensions

 Try, for example, tensor projection layer instead

 Pooling is very destructive

 In some applications, invariance is not desirable

 Take semantic segmentation (the task of classifying each pixel in an image according to the

object that pixel belongs to): obviously, if the input image is translated by one pixel to the

right, the output should also be translated by one pixel to the right

18

https://github.com/senyuan-juncheng/TensorProjectionLayer

3. Architecture of a CNN

 Many convolve + pool layers

 Filters are typically small, e.g. each channel 3 × 3

 Each filter creates a new channel in the convolution layer

 As pooling reduces size, the number of filters/channels is typically increased

 In the end, three-dimensional feature maps are flattened - the pixels are treated as separate

units - and fed into one or more fully-connected layers before reaching the output layer

19

Architecture of a CNN

 Over the years, variants of this fundamental architecture have been developed,

leading to amazing advances in the field

 The images in ImageNet are large (256 pixels) and there are 1,000 classes, some of which

are really subtle (try distinguishing 120 dog breeds). Looking at the evolution of the

winning entries is a good way to understand how CNNs work

 We can inspect the covnets like LeNet-5 architecture (1998), then winners of the ILSVRC

challenge: AlexNet (2012), GoogLeNet (2014), ResNet (2015) and SENet (2017)

20

https://chtseng.wordpress.com/2017/11/20/ilsvrc-

%E6%AD%B7%E5%B1%86%E7%9A%84%E6%B7%B1%E5%BA%A6%E5%AD%B8%E7

%BF%92%E6%A8%A1%E5%9E%8B/

https://poloclub.github.io/cnn-explainer/
https://www.tensorflow.org/datasets/catalog/imagenet2012
https://chtseng.wordpress.com/2017/11/20/ilsvrc-%E6%AD%B7%E5%B1%86%E7%9A%84%E6%B7%B1%E5%BA%A6%E5%AD%B8%E7%BF%92%E6%A8%A1%E5%9E%8B/

4. Regularization method - Data augmentation (Rule-based)

 Natural transformations are made of each training image when it is sampled by

SGD on the fly, thus ultimately making a cloud of images around each original

training image

 The label is left unchanged - in each case still a tiger

 Typical distortions are zoom, horizontal and vertical shift, shear, small rotations, and in this

case, horizontal flips

21

Regularization method - Mixup

 Mixup is a powerful data augmentation technique

 It’s helpful to have techniques that “dial-up/down” the amount of change, to see what

works best for you

1. Select another image from your dataset at random

2. Pick a weight at random

3. Take a weighted average (using the weight from step 2) of the selected image with your

image; this will be your independent variable

4. Take a weighted average (with the same weight) of this image’s labels (one-hot encoded)

with your image’s labels; this will be your dependent variable

22

Another regularization method – Label smoothing

 In the theoretical expression of loss, in classification problems, our targets are

one-hot encoded

 This can become very harmful if your data is not perfectly labeled

 Instead, we could replace all our 1s with a number a bit less than 1, and our 0s with a

number a bit more than 0, and then train. This is called label smoothing

 By encouraging your model to be less confident, label smoothing will make your training

more robust, even if there is mislabeled data!

 For example that has 10 classes, the targets become something like this (1 −
𝜖

𝑁
and

𝜖

𝑁
):

[0.01, 0.01, 0.01, 0.91, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01]

23

Example

 Here we use the 50-layer

resnet50 network trained on

the 1000-class imagenet corpus

to classify some photographs

 The table below the images

displays the true label at the

top of each panel, and the top

three choices of the classifier.

The numbers are the estimated

probabilities for each choice.

(A kite is a raptor, but not a

hawk.)

24

5. Low quality 𝑋 (image)

 The quality of machine learning models hinges on the quality of the data used

to train them, but it is hard to manually identify all of the low-quality data in a

big dataset

25

 CleanVision helps you

automatically identify common

types of data issues lurking in

image datasets

 Remember that you can use

cleanlab to find label issues (𝑦) for

images

https://github.com/cleanlab/cleanvision
https://github.com/cleanlab/examples

Which type of problems can be solved using CNN?

 Image recognizer can learn to complete many tasks

 For instance, a sound can be converted to a spectrogram, which is a chart that shows the a

mount of each frequency at each time in an audio file and can be tackled using CNN

 There are various transformations available for time series data. For instance, using a

technique called Gramian Angular Difference Field (GADF) and feed into CNN

26

Similar approach can be found in:

https://ndltd.ncl.edu.tw/cgi-

bin/gs32/gsweb.cgi/login?o=dnclcdr&s=id=%22110NSYS5507009%22.&searchmode=basic

https://etown.medium.com/great-results-on-audio-classification-with-fastai-library-ccaf906c5f52
https://forums.fast.ai/t/share-your-work-here/27676/531?page=18
https://ndltd.ncl.edu.tw/cgi-bin/gs32/gsweb.cgi/login?o=dnclcdr&s=id="110NSYS5507009".&searchmode=basic

Which type of problems can be solved using CNN?

 If the human eye can recognize categories from the images, then a deep

learning model should be able to do so too

 Fraud detection by drawing and image where the position, speed, and acceleration of the

mouse pointer by using colored lines and the clicks were displayed using small colored

circles. The results are fed into CNN for classification

 Malware binary file is divided into 8-bit sequences which are then converted to equivalent

decimal values. This decimal vector is reshaped and a gray-scale image is generated that

represents the malware sample

27

https://www.splunk.com/en_us/blog/security/deep-learning-with-splunk-and-tensorflow-for-security-catching-the-fraudster-in-neural-networks-with-behavioral-biometrics.html
https://ieeexplore.ieee.org/abstract/document/8328749

Conclusion

 The model should be organized into repeated blocks of layers, usually made of

multiple convolution layers and a max pooling layer

 The number of filters in your layers should increase as the size of the spatial feature maps

decreases

 Deep and narrow is better than broad and shallow

 Deep learning for computer vision also encompasses a number of somewhat

more niche tasks besides these three, such as image similarity scoring

(estimating how visually similar two images are), keypoint detection

(pinpointing attributes of interest in an image, such as facial features), pose

estimation, 3D mesh estimation, and so on

28

References

[1] Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow, 3rd

Edition Chapter 14

[2] An Introduction to Statistical Learning with Applications in R. Second

Edition Chapter 10

[3] Deep learning with Python, 2nd Edition Chapter 8~9

[4] Deep Learning for Coders with Fastai and Pytorch: AI Applications Without a

PhD Chapter 1 and 7

29

https://www.oreilly.com/library/view/hands-on-machine-learning/9781098125967/
https://www.statlearning.com/
https://www.manning.com/books/deep-learning-with-python-second-edition
https://github.com/fastai/fastbook2e

Appendix

30

Resources

 Understand CNN

 https://d2l.ai/chapter_convolutional-neural-networks/conv-layer.html

 https://setosa.io/ev/image-kernels/

 https://poloclub.github.io/cnn-explainer/

 https://cs231n.github.io/convolutional-networks/#conv

 https://distill.pub/2019/computing-receptive-fields/

 https://distill.pub/2018/building-blocks/

 https://distill.pub/2017/feature-visualization/

 Backpropagation for convolution and pooling layers

 Convolution layer

 Max pooling

31

https://d2l.ai/chapter_convolutional-neural-networks/conv-layer.html
https://poloclub.github.io/cnn-explainer/
https://poloclub.github.io/cnn-explainer/
https://cs231n.github.io/convolutional-networks/#conv
https://distill.pub/2019/computing-receptive-fields/
https://distill.pub/2018/building-blocks/
https://distill.pub/2017/feature-visualization/
https://pavisj.medium.com/convolutions-and-backpropagations-46026a8f5d2c
https://datascience.stackexchange.com/questions/11699/backprop-through-max-pooling-layers

Resources

 Data augmentation

 https://seunghan96.github.io/cv/vision_15_Data_Augmentation(1)/

 https://coggle.it/diagram/XttJu5nHqhqCptXn/t/data-augmentation

 Integration to sklearn

 https://github.com/adriangb/scikeras

 https://github.com/skorch-dev/skorch

 Data cleaning

 https://github.com/idealo/imagededup

 https://github.com/cleanlab/cleanlab

 https://github.com/cleanlab/cleanvision

32

https://seunghan96.github.io/cv/vision_15_Data_Augmentation(1)/
https://coggle.it/diagram/XttJu5nHqhqCptXn/t/data-augmentation
https://github.com/skorch-dev/skorch
https://github.com/skorch-dev/skorch
https://github.com/idealo/imagededup
https://github.com/cleanlab/cleanlab
https://github.com/cleanlab/cleanvision

Resources

 Image processing library

 https://github.com/ml-tooling/best-of-ml-python#image-data

 https://scikit-image.org

 https://docs.opencv.org/4.x/d6/d00/tutorial_py_root.html

 https://github.com/kornia/kornia

 Dataset

 https://paperswithcode.com/datasets?mod=images&task=image-classification

 ImageNet, Imagenette - https://github.com/fastai/imagenette

 Cifar10, Cifar100 - https://www.cs.toronto.edu/~kriz/cifar.html

 MNIST, FashionMNIST - https://github.com/zalandoresearch/fashion-mnist

 https://paperswithcode.com/datasets?mod=images&task=object-detection

 https://paperswithcode.com/datasets?mod=images&task=semantic-segmentation

33

https://github.com/ml-tooling/best-of-ml-python#image-data
https://scikit-image.org/
https://docs.opencv.org/4.x/d6/d00/tutorial_py_root.html
https://github.com/kornia/kornia
https://paperswithcode.com/datasets?mod=images&task=image-classification
https://github.com/fastai/imagenette
https://www.cs.toronto.edu/~kriz/cifar.html
https://github.com/zalandoresearch/fashion-mnist
https://paperswithcode.com/datasets?mod=images&task=object-detection
https://paperswithcode.com/datasets?mod=images&task=semantic-segmentation&page=1

Other popular architectures for image classifications

 Tensorflow

 Keras

 VGG

 DenseNet

 SENet

 EfficientNet

 MobileNet

 Pytorch

34

https://keras.io/api/applications/
https://keras.io/api/applications/vgg/
https://keras.io/api/applications/densenet/
https://arxiv.org/abs/1709.01507
https://keras.io/api/applications/efficientnet/
https://keras.io/api/applications/mobilenet/
https://github.com/huggingface/pytorch-image-models

Popular architectures for object detection

 Tensorflow

 https://keras.io/guides/keras_cv/object_detection_keras_cv/

 SSD

 Faster-RCNN

 RetinaNet

 Pytorch

 https://github.com/microsoft/computervision-recipes/tree/staging

 https://github.com/huggingface/pytorch-image-models

 https://github.com/facebookresearch/detectron2

 YOLO

 YOLOX

35

https://keras.io/guides/keras_cv/object_detection_keras_cv/
https://github.com/tensorflow/models/tree/master/research/object_detection
https://github.com/tensorflow/models/tree/master/research/object_detection
https://keras.io/examples/vision/retinanet/
https://github.com/microsoft/computervision-recipes/tree/staging
https://github.com/huggingface/pytorch-image-models
https://github.com/facebookresearch/detectron2
https://github.com/Megvii-BaseDetection/YOLOX

Popular architectures for image segmentation

 Tensorflow

 https://github.com/divamgupta/image-segmentation-keras

 https://github.com/google-research/deeplab2

 Pytorch

 https://github.com/qubvel/segmentation_models.pytorch

 https://github.com/facebookresearch/segment-anything

36

https://github.com/divamgupta/image-segmentation-keras
https://github.com/google-research/deeplab2
https://github.com/qubvel/segmentation_models.pytorch
https://github.com/facebookresearch/segment-anything

 Convolution:

 The size of kernel matrix is 3 × 3, stride is 1, no zero padding

 𝐶: 𝑅16 → 𝑅4

 Transposed convolution:

 𝐶𝑇: 𝑅4 → 𝑅16

Convolution and transposed convolution

37

https://github.com/vdumoulin/conv_arithmetic

Architecture of a CNN

 The size of the convolution filter

1. A common mistake is to use convolution kernels that are too large

2. For example, instead of using a convolutional layer with a 5 × 5 kernel, stack two layers

with 3 × 3 kernels: it will use fewer parameters and require fewer computations, and it

will usually perform better

3. One exception is for the first convolutional layer: it can typically have a large kernel,

usually with a stride of 2 or more: this will reduce the spatial dimension of the image

without losing too much information, and since the input image only has three channels

in general, it will not be too costly

38

AlexNet - Fully convolution neural network

 AlexNet is the first to stack convolutional layers directly on top of one another,

instead of stacking a pooling layer on top of each convolutional layer

 The idea of Fully Convolutional Networks (FCNs) was then introduced in a 2015 paper by

Jonathan Long et al., for semantic segmentation. The authors pointed out that you could

replace the dense layers at the top of a CNN by convolutional layers

39

 The ideas to replace pooling with convolution also appears:

 When you do 2 × 2 max pooling, we are completely destroying location

information within each pooling window: we return one scalar value per

window, with zero knowledge of which of the four locations in the

windows the value came from

 So while max pooling layers perform well for classification tasks, they

would hurt us quite a bit for a segmentation task. Meanwhile, strided

convolutions do a better job at downsampling feature maps while retaining

location information

https://cs231n.github.io/convolutional-networks/#convert

GoogleLeNet - Inception module

 “3 × 3 + 1(S)” means it uses a 3 × 3 kernel, stride 1, and "same" padding

 The input signal is first copied and fed to four different layers. The second set of

convolutional layers uses different kernel sizes (1 × 1, 3 × 3, and 5 × 5), allowing them to

capture patterns at different scales. Although 1 × 1 kernel cannot capture spatial patterns,

they can capture patterns along the depth dimension

 Concatenate all the outputs along the depth dimension in the depth concatenation layer

 The number of convolutional kernels for each convolutional layer is a hyperparameter

40

Xception - Depthwise separable convolutions

 Replaces the inception modules with a special type of layer called a depthwise

separable convolution layer (or separable convolution layer for short)

 While a regular convolutional layer uses filters that try to simultaneously capture spatial

patterns (e.g., an oval) and crosschannel patterns (e.g., mouth + nose + eyes = face), a

separable convolutional layer makes the strong assumption that spatial patterns and cross-

channel patterns can be modeled separately

41

 Thus, it is composed of two parts: the first

part applies a single spatial filter for each

input feature map, then the second part

looks exclusively for cross-channel

patterns—it is just a regular convolutional

layer with 1 × 1 filters

Xception - Depthwise separable convolutions

 SeparableConv2D in Keras that can be a drop-in replacement for Conv2D

 It relies on the assumption that spatial locations in intermediate activations are highly

correlated, but different channels are highly independent. Because this assumption is

generally true for the image representations learned by deep neural networks, it serves as a

useful prior that helps the model make more efficient use of its training data

42

ResNet - Residual learning

 Solve the vanishing gradient problem using skip (residual) connection

 The connection acts as an information shortcut around destructive or noisy blocks (such as

blocks that contain relu activations or dropout layers), enabling error gradient information

from higher layers to propagate noiselessly through a deep network

 Forward (𝑙 to 𝑙 + 1 layer) (In contrast to 𝑥𝐿 = ς𝑖=𝑙
𝐿−1𝑊𝑖 𝑥𝑙)

 𝑥𝑙+1 = 𝑥𝑙 + 𝐹 𝑥𝑙 ,𝑊𝑙 , 𝑥𝐿 = 𝑥𝑙 + σ𝑖=1
𝐿−1𝐹 𝑥𝑖 ,𝑊𝑖

 Backward (In contrast to
𝜕𝐸

𝜕𝑥𝑙
= ς𝑖=𝑙

𝐿−1𝑊𝑖
𝜕𝐸

𝜕𝑥𝐿
)



43

https://arxiv.org/abs/1603.05027

 Residual 𝑓(𝑥) is easier to learn using skip connection

 If the target function is fairly close to the identity function (which is often the case), this

will speed up training considerably

 The network can start making progress even if several layers have not started learning yet

ResNet - Residual learning

44

ResNet - Residual learning

 When the size is different and can not be added just use 1 × 1 convolution with

strides

 It is noted that some networks use concatenation instead of summation like DenseNet

 Behaves like ensemble

45

https://stackoverflow.com/questions/49164230/deep-neural-network-skip-connection-implemented-as-summation-vs-concatenation
https://openaccess.thecvf.com/content_cvpr_2017/papers/Huang_Densely_Connected_Convolutional_CVPR_2017_paper.pdf
https://arxiv.org/abs/1605.06431

AlexNet

46

GoogLeNet and ResNet

47

