Image processing with Convolutional
Neural Networks

Szu-Chi Chung

Department of Applied Mathematics, National Sun Yat-sen University

Image representation

» Images are represented as multi-dimensional arrays

The origin 1s located in top-left corner

0 1s for black value and 255 (or 1.0) 1s for white value

________Image: | np.ndarra

pixels: array values: a[2, 3]
channels: array dimensions
image encoding: dtype (np.uint8, np.float)
filters: functions (scipy, skimage, opencv)
2D grayscale images (row, column)
2D multichannel images (row, column, channel)
batch of 2D grayscale images (batch, row, column)
2D multichannel images (batch, row, column, channel)

https://pixspy.com/

Three essential computer vision tasks

» Image classification - Where the goal 1s to assign one or more labels to an image. It may be
either single-label classification (an image can only be in one category, excluding the others),
or multi-label classification (tagging all categories that an image belongs to)

For example, when you search for a keyword on the Google Photos app, behind the scenes, you’re
querying a very large multilabel classification

» Object detection - Where the goal is to draw rectangles (called bounding boxes)
around objects of interest in an image and associate each rectangle with a class

A self-driving car could use an object-detection model to monitor cars, pedestrians, and signs in
view of 1ts cameras, for instance

» Image segmentation - Where the goal is to “segment” or “partition” an image into different
areas, with each area usually representing a category
For instance, when Zoom or Google Meet displays a custom background behind you in a

video call, 1t’s using an 1mage segmentation model to tell your face apart from what’s behind it, at
pixel precision

Three essential computer vision tasks

Single-label multi-class classification Multi-label classification

@® Biking Bike Tree

) Rur-mint_:.; Person Car
O Swimming Boat House

Image segmentation

person

Three essential computer vision tasks - Image Segmentation

» Semantic segmentation, where each pixel 1s independently classified into a semantic category,
like “cat.” If there are two cats in the image, the corresponding pixels are all mapped to the
same generic “cat”

» Instance segmentation, which seeks not only to classify image pixels by category, but also to
parse out individual object instances. In an image with two cats 1n it, instance segmentation
would treat “cat 17 and “cat 2” as two separate classes of pixels

backé}du nd

The beginning of the story

» Visual perception takes place outside consciousness and gives us high-level
features

Visual perception is not trivial at all, and to understand it, we must look at how the sensory
modules work

Recently computers were also able to reliably perform seemingly trivial tasks for humans
such as detecting a puppy in a picture

» Convolutional Neural Networks (CNNs) or covnets emerged from the study of
the brain’s visual cortex, and they have been used 1n 1mage recognition since

the 1980s

The Study of the Visual Cortex

» Studies in the 1950s show that neurons in the visual cortex have a small local
receptive field

Some neurons have larger receptive fields, and they react to more complex patterns that are
combinations of the lower-level patterns (notice that each neuron 1s connected only to a
few neurons from the previous layer, which 1s called partially connected)

Some neurons react only to images of horizontal lines, while others react only to lines with
different orientations (the strength may be the same, which is called weight sharing)

Example of a single filter

1 0|l -1

Convolutional Neural Networks 1in image classification

» Neural networks rebounded around 2010 with big successes 1n 1mage
classification

Shown are samples from CIFAR100 database. 32 X 32 color natural images, with 100
classes. 50K training images, 10K test images

Each image is a three-dimensional array or feature map: 32 X 32 X 3 array of 8-bit
numbers. The last dimension represents the three color channels for red, green and blue

How CNNs Work

» The CNN builds up an image in a hierarchical fashion

» Edges and shapes are recognized and pieced together to form more complex
shapes, eventually assembling the target image

» This hierarchical construction 1s achieved using convolution and pooling layers

TIGER

1. Convolution operations

a p

» Input image = y S

-
]l,c Convolution filter (kernel) = [

[

aa+bf+dy +e6 ba+chf+ey+fS§

Convoluted image = |[da +eff + gy + hd ea+ ff+hy +id

ga+hB+jy+kd ha+if+ky+1o

1. The filter 1tself can be represented as an 1mage that represents a small shape,
edge etc. We slide it around the input image, scoring for matches

a b
d e
g h

J k

2. The scoring 1s done via dot-products, illustrated above. If the subimage of the
input 1mage 1s similar to the filter, the score 1s high, otherwise low

3. The filters are learned during training
10

Convolution Layer

» To have the same height and width as the input image, 1t 1s common to add
zeros around the mputs, which 1s called zero padding (Same padding)
If there is no padding applied to the input it 1s called valid padding

» It 1s also possible to space out the receptive fields. The shift from one receptive
field to the next 1s called the stride

» Transposed convolutions (deconvolution) work by swapping the forward and
backward passes of a convolution

11

https://github.com/vdumoulin/conv_arithmetic

Convolution Example — locally connected

» The 1dea of convolution with a filter 1s to find common patterns that occur in
different parts of the i1mage

The two filters shown here highlight vertical and horizontal stripes (Note that the neuron’s
weights can be represented as a small image that has the size of the receptive field)

The result of the convolution 1s a new feature map (units in the hidden layer)

Notice the neurons are now locally connected and share the same weight for each feature map

12

Convolution Example — weight sharing

» In a convolution layer, we use a whole bank of filters to pick out a variety of
differently-oriented edges and shapes in the 1mage

» Using predefined filters 1s standard practice in image processing. By contrast,
with CNNs the filters are learned for the specific classification task

You must defined the size, stride and padding for a given layer

» Filter weights are the parameters going from an input layer to a hidden layer,
with one hidden unit for each pixel in the convolved image. The same weights
in a given filter are reused for all possible patches in the image

All neurons within a given feature map share the same parameters and neurons in different
feature maps use different parameters

13

https://setosa.io/ev/image-kernels/

Stacking Multiple Feature Maps

» If we use K different convolution, we get K
two-dimensional output feature maps, which
together are treated as a single three-
dimensional feature map

14

The third dimension is called the depth (or
channel)

Input 1images has three channels represented by
a three-dimensional feature map. A single
convolution filter will also have three channels,
one per color, with potentially different filter
weights, and dot-products are summed (integral)

We typically apply the ReLU activation
function to the convolved image and higher
layers will have larger receptive fields

Convolutional

Feature Q layer 2
[T/ map1 '
-
Filters : La
1! \L A .
ST Convolutional
2N 171
[Map1 Fori--f layer 1
N ! !

Input layer

Channels

Red
Green
Blue

https://cs231n.github.io/convolutional-networks/#conv
https://distill.pub/2019/computing-receptive-fields/

Memory Requirements

» CNNs convolutional layers require a huge amount of RAM. This 1s especially
true during training

During inference the RAM occupied by one layer can be released as soon as the next layer
has been computed, so you only need as much RAM as required by two consecutive layers
But during training everything computed during the forward pass needs to be preserved for
the reverse pass, so the amount of RAM needed is (at least) the total amount of RAM
required by all layers

Check appendix for the details about backpropagation
» If training crashes because of an out-of-memory error
Try reducing the mini-batch size
Try reducing dimensionality using a stride, or removing a few layers
Try using 16-bit floats instead of 32-bit floats

15

2. Pooling Layer

» The goal 1s to subsample the input image in order to reduce the computational
load, the memory usage, and the number of parameters

16

Like in convolutional layers, each neuron in a pooling layer is connected to the outputs of
a limited number of neurons in the previous layer, located within a small rectangular
receptive field. You must define its size, stride, and the padding type

A pooling neuron has no weights

A pooling layer typically works on every input channel independently, so the output
depth 1s the same as the input depth

/
/
VA |

max

1(5) 1 e
2 L d—" —) =]
I - =

>
A T A A ===

Pooling

1 2 5 3

3 0 1 2 3 5
» Max pool > 1 3 4 —>[2 A

1 1 2 0

» Each non-overlapping 2 X 2 block 1s
replaced by its maximum

This sharpens the feature identification

Reduces the dimension by a factor of 4 - 1.e.

factor of 2 1in each dimension

Allows for locational invariance

Such 1nvariance can be useful in cases where
the prediction should not depend on these
details, such as 1n classification tasks

17

[MaxPool2D]

[MaxPool2D]

Pooling

» Average pooling 1s less popular now due to its performance

Max pooling preserves only the strongest features, getting rid of all the meaningless ones,
so the next layers get a cleaner signal to work with. Moreover, max pooling offers stronger
translation invariance than average pooling, and it requires slightly less compute

» Just like dimension reduction, you can also perform it on the depth dimension
Allow CNN to learn to be invariant to various features rather than the spatial dimensions
Try, for example, tensor projection layer instead

» Pooling is very destructive
In some applications, invariance 1s not desirable

Take semantic segmentation (the task of classifying each pixel in an image according to the
object that pixel belongs to): obviously, if the input image is translated by one pixel to the
right, the output should also be translated by one pixel to the right

18

https://github.com/senyuan-juncheng/TensorProjectionLayer

3. Architecture of a CNN

» Many convolve + pool layers
Filters are typically small, e.g. each channel 3 X 3
Each filter creates a new channel in the convolution layer

p
4
» As pooling reduces size, the number of filters/channels 1s typically increased
4

In the end, three-dimensional feature maps are flattened - the pixels are treated as separate
units - and fed into one or more fully-connected layers before reaching the output layer

Architecture of a CNN

» Over the years, variants of this fundamental architecture have been developed,
leading to amazing advances in the field

» The images in ImageNet are large (256 pixels) and there are 1,000 classes, some of which
are really subtle (try distinguishing 120 dog breeds). Looking at the evolution of the
winning entries 1s a good way to understand how CNNs work

» We can inspect the covnets like LeNet-5 architecture (1998), then winners of the ILSVRC
challenge: AlexNet (2012), GoogleNet (2014), ResNet (2015) and SENet (2017)

30%

25%

n(%)

20%

15%

https://chtseng.wordpress.com/2017/11/20/ilsvrc-
%E6%AD%B7%ES5%B1%86%E7%9A%84%E6%B7%B1%ES5%BA%A6%E5%AD%B8%E7
%BF%92%E6%A8%A1%ES5%9E%8B/

10%

Error Rate in Image Classificatiol

| Human Performance Zone

5%

NEC-UIUC XRCE AlexNet ZFNet GoogleNet ResNet SENet
> 20 (2010) (2011) (2012) (2013) (2014) (2015) (2017)

Neural Network Architecture

https://poloclub.github.io/cnn-explainer/
https://www.tensorflow.org/datasets/catalog/imagenet2012
https://chtseng.wordpress.com/2017/11/20/ilsvrc-%E6%AD%B7%E5%B1%86%E7%9A%84%E6%B7%B1%E5%BA%A6%E5%AD%B8%E7%BF%92%E6%A8%A1%E5%9E%8B/

4. Regularization method - Data augmentation (Rule-based)

» Natural transformations are made of each training image when 1t 1s sampled by
SGD on the fly, thus ultimately making a cloud of images around each original
training 1mage

The label 1s left unchanged - in each case still a tiger

Typical distortions are zoom, horizontal and vertical shift, shear, small rotations, and in this
case, horizontal flips

21

Regularization method - Mixup

» Mixup 1s a powerful data augmentation technique

It’s helpful to have techniques that “dial-up/down’ the amount of change, to see what
works best for you

Select another image from your dataset at random
Pick a weight at random

Take a weighted average (using the weight from step 2) of the selected image with your
image; this will be your independent variable

Take a weighted average (with the same weight) of this image’s labels (one-hot encoded)
with your image’s labels; this will be your dependent variable

22

Another regularization method — Label smoothing

» In the theoretical expression of loss, in classification problems, our targets are
one-hot encoded
» This can become very harmful if your data 1s not perfectly labeled

» Instead, we could replace all our 1s with a number a bit less than 1, and our Os with a
number a bit more than 0, and then train. This is called label smoothing

» By encouraging your model to be less confident, label smoothing will make your training
more robust, even 1f there 1s mislabeled data!

» For example that has 10 classes, the targets become something like this (1 — % and %):

10.01, 0.01, 0.01, 0.91, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01]

Example

» Here we use the 50-layer
resnet50 network trained on
the 1000-class 1imagenet corpus
to classify some photographs

» The table below the images
displays the true label at the
top of each panel, and the top
three choices of the classifier.
The numbers are the estimated
probabilities for each choice.

(A kite 1s a raptor, but not a
hawk.)

24

flamingo Cooper’s hawk Cooper’s hawk
flamingo 0.83 | kite 0.60 | fountain 0.35
spoonbill 0.17 | great grey owl 0.09 | nail 0.12
white stork 0.00 | robin 0.06 | hook 0.07

Lhasa Apso cat Cape weaver

Tibetan terrier 0.56 | Old English sheepdog 0.82 | jacamar 0.28
Lhasa 0.32 | Shih-Tzu 0.04 | macaw 0.12
cocker spaniel ~ 0.03 | Persian cat 0.04 | robin .12

5. Low quality X (1mage)

» The quality of machine learning models hinges on the quality of the data used
to train them, but 1t is hard to manually 1dentify all of the low-quality data in a

big dataset

25

CleanVision helps you

automatically 1dentify common
types of data 1ssues lurking in
image datasets

Remember that you can use
cleanlab to find label issues (y) for
images

_ IN_ea_r_Du_pIicat

https://github.com/cleanlab/cleanvision
https://github.com/cleanlab/examples

Which type of problems can be solved using CNN?

» Image recognizer can learn to complete many tasks

» For instance, a sound can be converted to a spectrogram, which is a chart that shows the a
mount of each frequency at each time in an audio file and can be tackled using CNN

» There are various transformations available for time series data. For instance, using a
technique called Gramian Angular Difference Field (GADF) and feed into CNN

children_playing

gun_shot

car_horn

GADF

jackhammer street_music

children_playing

100 200 300 @0 500

Similar approach can be found in:
https://ndltd.ncl.edu.tw/cgi-
bin/gs32/gsweb.egitHogin?o=dncledr&s=1d=%22 ONSY¥ S5507009%22 :&searchmode=basie--

https://etown.medium.com/great-results-on-audio-classification-with-fastai-library-ccaf906c5f52
https://forums.fast.ai/t/share-your-work-here/27676/531?page=18
https://ndltd.ncl.edu.tw/cgi-bin/gs32/gsweb.cgi/login?o=dnclcdr&s=id="110NSYS5507009".&searchmode=basic

Which type of problems can be solved using CNN?

» If the human eye can recognize categories from the images, then a deep
learning model should be able to do so too

by drawing and 1image where the position, speed, and acceleration of the
mouse pointer by using colored lines and the clicks were displayed using small colored
circles. The results are fed into CNN for classification

1s divided into 8-bit sequences which are then converted to equivalent
decimal values. This decimal vector is reshaped and a gray-scale image i1s generated that
represents the malware sample !

| B.A A)\ Fakerean Allaple.A

C2LOP.P A Lolyda.AA3 { Alueron.genlJ

27

https://www.splunk.com/en_us/blog/security/deep-learning-with-splunk-and-tensorflow-for-security-catching-the-fraudster-in-neural-networks-with-behavioral-biometrics.html
https://ieeexplore.ieee.org/abstract/document/8328749

Conclusion

» The model should be organized into repeated blocks of layers, usually made of
multiple convolution layers and a max pooling layer

The number of filters in your layers should increase as the size of the spatial feature maps
decreases

Deep and narrow i1s better than broad and shallow

» Deep learning for computer vision also encompasses a number of somewhat
more niche tasks besides these three, such as image similarity scoring
(estimating how visually similar two 1mages are), keypoint detection
(pinpointing attributes of interest in an 1mage, such as facial features), pose
estimation, 3D mesh estimation, and so on

28

Retferences

1] Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow, 3rd
Fdition Chapter 14

[2] An Introduction to Statistical Learning with Applications in R. Second
Fdition Chapter 10

[3] Deep learning with Python, 2nd Edition Chapter 8~9

[4] Deep Learning for Coders with Fastai and Pytorch: AI Applications Without a
PhD Chapter 1 and 7

https://www.oreilly.com/library/view/hands-on-machine-learning/9781098125967/
https://www.statlearning.com/
https://www.manning.com/books/deep-learning-with-python-second-edition
https://github.com/fastai/fastbook2e

Appendix

30

Resources

» Understand CNN

https://d2l.a1/chapter convolutional-neural-networks/conv-layer.html

https://setosa.i0/ev/image-kernels/

https://poloclub.github.10/cnn-explainer/

https://cs23 1n.github.io/convolutional-networks/#conv

https://distill.pub/2019/computing-receptive-fields/

https://distill.pub/2018/building-blocks/
https://distill.pub/2017/feature-visualization/

vV Vv Vv VvV V9v Vv V9

» Backpropagation for convolution and pooling layers

» Convolution layer

» Max pooling

https://d2l.ai/chapter_convolutional-neural-networks/conv-layer.html
https://poloclub.github.io/cnn-explainer/
https://poloclub.github.io/cnn-explainer/
https://cs231n.github.io/convolutional-networks/#conv
https://distill.pub/2019/computing-receptive-fields/
https://distill.pub/2018/building-blocks/
https://distill.pub/2017/feature-visualization/
https://pavisj.medium.com/convolutions-and-backpropagations-46026a8f5d2c
https://datascience.stackexchange.com/questions/11699/backprop-through-max-pooling-layers

Resources

» Data augmentation
» https://seunghan96.github.io/cv/vision 15 Data Augmentation(1)/

» https://coggle.it/diagram/XttJuSnHghqgCptXn/t/data-augmentation

» Integration to sklearn
» https://github.com/adriangb/scikeras
» https://github.com/skorch-dev/skorch

» Data cleaning
» https://github.com/idealo/imagededup

» https://github.com/cleanlab/cleanlab
» https://github.com/cleanlab/cleanvision

https://seunghan96.github.io/cv/vision_15_Data_Augmentation(1)/
https://coggle.it/diagram/XttJu5nHqhqCptXn/t/data-augmentation
https://github.com/skorch-dev/skorch
https://github.com/skorch-dev/skorch
https://github.com/idealo/imagededup
https://github.com/cleanlab/cleanlab
https://github.com/cleanlab/cleanvision

Resources

» Image processing library
» https://github.com/ml-tooling/best-of-ml-python#image-data

» https://scikit-image.org

» https://docs.opencv.org/4.x/d6/d00/tutorial py root.html
» https://github.com/kornia/kornia

» Dataset

» https://paperswithcode.com/datasets?mod=1mages&task=1mage-classification
» ImageNet, Imagenette - https://github.com/fastai/imagenette
» Cifarl0, Cifar100 - https://www.cs.toronto.edu/~kriz/cifar.html
» MNIST, FashionMNIST - https://github.com/zalandoresearch/fashion-mnist

» https://paperswithcode.com/datasets?mod=1images&task=object-detection

» https://paperswithcode.com/datasets?mod=1mages&task=semantic-segmentation

https://github.com/ml-tooling/best-of-ml-python#image-data
https://scikit-image.org/
https://docs.opencv.org/4.x/d6/d00/tutorial_py_root.html
https://github.com/kornia/kornia
https://paperswithcode.com/datasets?mod=images&task=image-classification
https://github.com/fastai/imagenette
https://www.cs.toronto.edu/~kriz/cifar.html
https://github.com/zalandoresearch/fashion-mnist
https://paperswithcode.com/datasets?mod=images&task=object-detection
https://paperswithcode.com/datasets?mod=images&task=semantic-segmentation&page=1

Other popular architectures for image classifications

» Tensorflow
» Keras
» VGG
» DenseNet
» SENet
» EfficientNet
» MobileNet
» Pytorch

https://keras.io/api/applications/
https://keras.io/api/applications/vgg/
https://keras.io/api/applications/densenet/
https://arxiv.org/abs/1709.01507
https://keras.io/api/applications/efficientnet/
https://keras.io/api/applications/mobilenet/
https://github.com/huggingface/pytorch-image-models

Popular architectures for object detection

» Tensorflow

» https://keras.io/guides/keras cv/object detection keras cv/
» SSD

» Faster-RCNN

» RetinaNet

» Pytorch

» https://github.com/microsoft/computervision-recipes/tree/staging

» https://github.com/huggingface/pytorch-image-models

» https://github.com/facebookresearch/detectron?2

» YOLO
» YOLOX

https://keras.io/guides/keras_cv/object_detection_keras_cv/
https://github.com/tensorflow/models/tree/master/research/object_detection
https://github.com/tensorflow/models/tree/master/research/object_detection
https://keras.io/examples/vision/retinanet/
https://github.com/microsoft/computervision-recipes/tree/staging
https://github.com/huggingface/pytorch-image-models
https://github.com/facebookresearch/detectron2
https://github.com/Megvii-BaseDetection/YOLOX

Popular architectures for image segmentation

» Tensorflow
» https://github.com/divamgupta/image-segmentation-keras

» https://github.com/google-research/deeplab2

» Pytorch
» https://github.com/qubvel/segmentation models.pytorch

» https://github.com/facebookresearch/segment-anything

https://github.com/divamgupta/image-segmentation-keras
https://github.com/google-research/deeplab2
https://github.com/qubvel/segmentation_models.pytorch
https://github.com/facebookresearch/segment-anything

Convolution and transposed convolution

» Convolution:

» The size of kernel matrix is 3 X 3, stride 1s 1, no zero padding
» C: R*®* > R*

wo,0 woa1 wo2 0 wipo wip w2z 0 wepe woy w22 0 0 0 0 0
0 woo wo1 wo2 0 wie win wia 0 wep wa; wyz 0 0 0 0
0 0 0 0 woo wo1 wo2 0 wig winp wie 0 wepo way wez 0
0 0 0 0 0 Wp,o Wp,1 Wop2 0 o Wi wWy2 0 W20 W21 W22

» Transposed convolution:
» CT: R* > R'®

https://github.com/vdumoulin/conv_arithmetic

Architecture of a CNN

» The size of the convolution filter
I. A common mistake is to use convolution kernels that are too large

2. For example, instead of using a convolutional layer with a 5 x 5 kernel, stack two layers
with 3 x 3 kernels: 1t will use fewer parameters and require fewer computations, and it
will usually perform better

3. One exception is for the first convolutional layer: it can typically have a large kernel,
usually with a stride of 2 or more: this will reduce the spatial dimension of the image
without losing too much information, and since the input 1image only has three channels
in general, it will not be too costly

AlexNet - Fully convolution neural network

» AlexNet 1s the first to stack convolutional layers directly on top of one another,
instead of stacking a pooling layer on top of each convolutional layer

» The idea of Fully Convolutional Networks (FCNs) was then introduced in a 2015 paper by
Jonathan Long et al., for semantic segmentation. The authors pointed out that you could

replace the dense layers at the top of a CNN by convolutional layers

» The ideas to replace pooling with convolution also appears:

When you do 2 x 2 max pooling, we are completely destroying location
information within each pooling window: we return one scalar value per
window, with zero knowledge of which of the four locations in the
windows the value came from

So while max pooling layers perform well for classification tasks, they
would hurt us quite a bit for a segmentation task. Meanwhile, strided
convolutions do a better job at downsampling feature maps while retaining
location information

1x1

% feature
maps

Convolution
10, 7x7 + 1(V)

224 x 224
image

https://cs231n.github.io/convolutional-networks/#convert

GoogleLeNet - Inception module

» “3 x 3+ 1(S)” means 1t uses a 3 x 3 kernel, stride 1, and "same" padding

40

The input signal 1s first copied and fed to four different layers. The second set of
convolutional layers uses different kernel sizes (1 x 1, 3 x 3, and 5 x 5), allowing them to
capture patterns at different scales. Although 1 x 1 kernel cannot capture spatial patterns,
they can capture patterns along the depth dimension

Concatenate all the outputs along the depth dimension in the depth concatenation layer
The number of convolutional kernels for each convolutional layer 1s a hyperparameter

*

. I A
Depth

concat

N

Convolution
1x1 + 1(S)

Convolution
3x3 +1(S)

Convolution
5x5 + 1(S)

Convolution
1x1 + 1(S)

Convolution
1x1 + 1(S)

Convolution
1x1 + 1(S)

Max pool
3x3+1(S)

Xception - Depthwise separable convolutions

» Replaces the inception modules with a special type of layer called a depthwise
separable convolution layer (or separable convolution layer for short)

While a regular convolutional layer uses filters that try to simultaneously capture spatial
patterns (e.g., an oval) and crosschannel patterns (e.g., mouth + nose + eyes = face), a
separable convolutional layer makes the strong assumption that spatial patterns and cross-

41

channel patterns can be modeled separately
Thus, it 1s composed of two parts: the first
part applies a single spatial filter for each
input feature map, then the second part
looks exclusively for cross-channel
patterns—it 1s just a regular convolutional
layer with 1 x 1 filters

Feature
map 1 ~

map 2 |

~

\

?

=

':' ‘.:\ Filter 1
Pl l\\

""""""

,,,,,,,,,

(
=

\

Regular convolutional
layer with depthwise-
only filters (1x1)

VAN

Filter2 /%

T
v
noay
oo

[
i

v

Filter 3

Spatial-only filters
(1 per input channel)

\“\
LIEY
ooy
oy
o
i [
]

Xception - Depthwise separable convolutions

» SeparableConv2D in Keras that can be a drop-in replacement for Conv2D

It relies on the assumption that spatial locations in intermediate activations are highly
correlated, but different channels are highly independent. Because this assumption i1s
generally true for the image representations learned by deep neural networks, it serves as a
useful prior that helps the model make more efficient use of its training data

T

1 x 1 conv
(pointwise conv)
. J

A

Concatenate

) g Depthwise convolution:
independent spatial

[3 x 3 conv [3 X 3conv][3 X SConv][S X Sconv] / convs per channel

{ Split channels J
A

42

ResNet - Residual learning

» Solve the vanishing gradient problem using skip (residual) connection

» The connection acts as an information shortcut around destructive or noisy blocks (such as
blocks that contain relu activations or dropout layers), enabling error gradient information
from higher layers to propagate noiselessly through a deep network

» Forward (I to [+ 1 layer) (In contrast to x;, = [[7= W; x;)

by xpp1 =X+ FQo, W), xp = x; + X521 Fx, W)

OE o L—1 OE
» Backward (In contrast to Fr [1i5 W, P input
" B B sry OE § =
= = e . W. Y
dx; drp dx; oxg (+ 0z ;F(IH) { Block J Residual
Output

https://arxiv.org/abs/1603.05027

ResNet - Residual learning

» Residual f (x) 1s easier to learn using skip connection

If the target function 1s fairly close to the identity function (which 1s often the case), this
will speed up training considerably

The network can start making progress even if several layers have not started learning yet

h(x)
t b
hx) . ELN
- 5 L _
Layer 2 g Layer 2
h(x c fix) = h(x) - X) ¢ | Residual
$ SR 4 (x) = h(x) Resi
Layer 1 g Layer 1 e
? _ @ * - V\ .
Input Input
—

44

ResNet - Residual learning

» When the size 1s different and can not be added just use 1 X 1 convolution with
strides

It 1s noted that some networks use concatenation instead of summation like DenseNet

» Behaves like ensemble

I RelLU
- P\ 4 f
- : BN Building block
5N P - Convolution uliding
Convolution 128, 3x3 + 1(S) BN + conmeion

128, 1x1 + 2(8) Convolution RelLU OW]) {E :)]
= 128, 3x3 + 2(S) /2 Js

~ Residual

— ~ - module
L __

45

https://stackoverflow.com/questions/49164230/deep-neural-network-skip-connection-implemented-as-summation-vs-concatenation
https://openaccess.thecvf.com/content_cvpr_2017/papers/Huang_Densely_Connected_Convolutional_CVPR_2017_paper.pdf
https://arxiv.org/abs/1605.06431

AlexNet

Table 14-1. LeNet-5 architecture Table 14-2. AlexNet architecture
Layer Type Maps Size Kernel size Stride Activation Layer Type Kernel size Stride Padding Activation
Out Fully Connected - 10 — _ RBF Out Fully Connected - 1,000 - - - Softmax
F9 Fully C ted - 4,096 - - - RelU
F6 Fully Connected - 84 - - tanh Wy Hannete €
s C Iuti 120 1x1 555 1 h F8 Fully Connected — 4,096 - - - RelLU
onvolution a % fan 7 Convolution 256 13%x 13 3X3 1 SAME RelLU
4 AvgPooling 16 5x5 2x2 2 fanh 6 Comolution 384 13x13 3x3 1 SAME RelU
G Convolution 16 10x10 5x5 1 tanh (5 Convolution 384 13x13 3x3 1 SAME Rell
\Y) Avg Pooling 6 14x14 2x2 2 tanh S4 MaxPooling 256 Bx13 3x3 2 VALD -
(1 Convolution 6 28x28 5x5 1 tanh G Convolution 256 27x27 5x5 1 SAME RelU
In Input 1 32%x3) — _ _ 52 MaxPooling 96 21x2] 3X3 2 VALD -
(1 Convolution 9 5555 11x1 4 VALID ReLU
In Input 3 (RGB) 227 x 227 - - - -

46

GoogLeNet and ResNet

f

¢

Softmax

Fully Connected

1000 units

Convolution
128, 3%3 + 1(S)

Global Avg Pool

1024

Convolution
128, 3x3 + 1(S)

Convolution
128, 3%x3 + 1(S)

—— Deep! /]

Convolution
128, 3x3 + 2(S)

RelLU

Max Pool
64, 3x3 + 2(S)

Convolution
64, 3x3 + 1(S)

Convolution
64, 3x3 + 1(S)

Convolution
64, 7x7 + 2(S)

Convolution
64, 3x3 + 1(S)

Convolution
64, 3x3 + 1(S)

|— |— Softmax
Max Pool 112 288 64 64 Fully Connected
192, 3x3 + 2(S) D 144 32 1000 units
Local Response 128 256 64 64 Dropout
Norm 128 24 40%
Convolution 160 224 64 64 Global Avg Pool
192, 3x3 + 1(S) b 112 24 1024
Convolution 192 208 48 64 384 384 128 128
64, 1x1 + 1(S) > 96 16 > 192 48
Local Response Max Pool 256 320 128 128
Norm 480, 3x3 + 2(S) 160 32
Max Pool 128 192 96 64 Max Pool
64, 3x3 + 2(S) d,:; 128 32 832, 3x3 + 2(S)
Convolution 64 128 32 32 256 320 128 128
64, 7x7 + 2(S) 96 16 160 32
Input T ?

*

47

b = inception module

Input

Convolution
64, 3x3 + 1(S)

Batch
Norm

BN +
RelLU

Residual Unit

*

Convolution
64, 3x3 + 1(S)

